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Couplings

Consider a diffusion, which we’ll call Brownian motion, Bt on a
manifold (say, Riemannian or sub-Riemannian), starting from any
x ∈ M. A coupling of such BMs is a process (Bt, B̃t) on M ×M, from
(x, x̃) such that each marginal is a BM.

Goal:
I get the processes to meet quickly;
I that is, to find a joint distribution so that the coupling time
τ = inf{t > 0 : Bt = B̃t} is as small as possible. This leads to
“reflection-style” couplings.

I (Another possible goal is to keep Bt and B̃t a.s. as close as
possible. This leads to “parallel-style” couplings.)
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Consequences of “reflection-type” couplings

The Aldous inequality says the total variation distance between the
laws of the processes satisfies

distTV
(
L (Bt) ,L

(
B̃t
))
≤ P (τ > t) .

With appropriate dependence of τ on dist (x, x̃), this gives gradient
bounds for the heat semigroup.

Also connections to Liouville properties, first eigenvalue on a
compact manifold, etc.



Quality of reflection couplings

I A coupling is successful if τ <∞ a.s.
I A coupling is efficient if

P (τ > t)
distTV

(
L (Bt) ,L(B̃t)

)
stays bounded as t→∞.

I A coupling is maximal if

distTV
(
L (Bt) ,L

(
B̃t
))

=P (τ > t)

for all t > 0.



Kendall-Cranston mirror coupling
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On a Riemannian manifold, we have a Markovian reflection scheme,
where we infinitesimally reflect along the minimal geodesic from Bt

to B̃t.

This gives an SDE on M ×M for the joint process. (See Elton Hsu’s
book.)



Properties of this mirror coupling

I Technically, the cut locus is an issue. Resolved using random
walk approxiamtion (von Renesse ’04).

I Because it’s Markov, Itô’s lemma gives an SDE for the distance
between the particles, which is compatible with standard
comparison geometry.

I It yields the sharp lower bound on λ1(M) for both
I compact manifolds with positive lower Ricci bound, in terms of

the bound,
I and compact manifolds with non-negative Ricci curvature, in

terms of diameter (Zhong and Yang ’84).
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Maximal couplings on model spaces

The sharpness above is related to the fact that this mirror coupling is
maximal on the model spaces Sn and Rn.

In general, there is an abstract existence result for maximal couplings
(Sverchkov-Smirnov ’90). They are not unique, even for R
(Hsu-Sturm ’13, credited to Fitzpatrick).

Markovian maximal couplings are closely related to global reflections
on M (Kuwada ’07, ’09).
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Reflection on R2

x1

x2
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On R2, unlike a more generic Riemannian manifold, the infinitesimal
reflection along the geodesic from Bt to B̃t (on the left) extends to a
global reflection of the space (on the right).

The reflection is through the x2-axis, chosen to be the bisector
between the starting points, which is known as soon as the starting
points are chosen.



The Heisenberg group, H
The most fundamental example of a sub-Riemannian manifold is the
(3D) Heisenberg group:

I topologically R3 ;
I

X = ∂x −
y
2
∂z and Y = ∂y +

x
2
∂z,

are an orthonormal set determines the horizontal distribution
H = span{X,Y} and the inner product on it;

I H is a Lie group, with the group law

(x, y, z) · (x′, y′, z′) =

(
x + x′, y + y′, z + z′ +

1
2
(
xy′ − yx′

))
;

I if Z = ∂z, then X, Y , Z are left-invariant and

[X,Y] = Z and [X,Z] = [Y,Z] = 0.
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Heisenberg Brownian motion

I π : H→ R2 given by π(x, y, z) = (x, y) is a submersion;
I horizontal curves are curves (x(t), y(t)) in xy-plane lifted by

letting z(t) be the swept area from the origin; their length is their
R2-length; geodesics are (lifts of) circles;

I Heisenberg BM has generator 1
2

(
X2 + Y2

)
= 1

2∆H;
I Heisenberg BM is planar BM (xt, yt) lifted by the associated

Lévy area

zt = z0 +
1
2

∫ t

0
xs dys −

1
2

∫ t

0
ys dxs.



Coupled Heisenberg BMs

Successful Markovian couplings of H-BMs (from any starting points)
is possible (Ben Arous-Cranston-Kendall ’95, Kendall ’07-), but. . .

no Markovian coupling can be efficient, in particular for BMs started
from the same vertical fiber (Banerjee-Gordina-Mariano ’18).

Banerjee-Gordina-Mariano ’18 do construct a non-Markovian (and
non-co-adapted) efficient coupling from two points on the same fiber
(and apply it). The construction is somewhat intricate, based on the
Karhunen-Loève expansion and properties of the Brownian bridge,
iterated on intervals of time of different lengths.

Bénéfice (’23) gave similar constructions for SL(2,R) and SU(2).

(Baudoin-Gordina-Mariano ’20 give a comparison of coupling
techniques with Γ-calculus for some Kolmogorov-type diffusions.)
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An elementary maximal coupling

W.l.o.g, two points on the same fiber are (0, 0, 0) and (0, 0, 2a) for
a > 0.

Let Bt = (xt, yt, zt) be H-BM from (0, 0, 0), and σa the first time zt

hits a. Let Rθ : R2 → R2 be reflection across the line of at angle θ
through the origin.

Then

B̃t = (x̃t, ỹt, z̃t) =

{(
Rθ(xσa ,yσa ) (xt, yt) , 2a− zt

)
for t ≤ σa

(xt, yt, zt) for t > σa
(∗)

is a H-BM from (0, 0, 2a), which couples with Bt at time σa.
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The picture

x

y

θ (Bσa)

Bσa

Bt

B̃t

Blue area = Lévy area of Bσa = a
Green area = Lévy area of B̃σa = −a

In the total space H, we’re inducing a (twisted) reflection across the
plane {z = a}.



Properties

I The construction of the coupling is elementary, using no fine
properties of paths.

I The coupling time τ is reduced (or “reduced”) to a hitting time
σa for a canonical 1D marginal process.

I Relative to the global isometry implied by (∗), zt satisfies a
reflection principle, just like 1D BM

P (σa > t) = 1− 2P (zt > a) .

I From this, the coupling is immediately seen to be maximal (for
such initial points).

I The construction directly generalizes to SL(2,R), its universal

cover ˜SL(2,R), and SU(2), and beyond to anisotropic
Heisenberg groups of any dimension,. . .



Properties

I The construction of the coupling is elementary, using no fine
properties of paths.

I The coupling time τ is reduced (or “reduced”) to a hitting time
σa for a canonical 1D marginal process.

I Relative to the global isometry implied by (∗), zt satisfies a
reflection principle, just like 1D BM

P (σa > t) = 1− 2P (zt > a) .

I From this, the coupling is immediately seen to be maximal (for
such initial points).

I The construction directly generalizes to SL(2,R), its universal

cover ˜SL(2,R), and SU(2), and beyond to anisotropic
Heisenberg groups of any dimension,. . .



Properties

I The construction of the coupling is elementary, using no fine
properties of paths.

I The coupling time τ is reduced (or “reduced”) to a hitting time
σa for a canonical 1D marginal process.

I Relative to the global isometry implied by (∗), zt satisfies a
reflection principle, just like 1D BM

P (σa > t) = 1− 2P (zt > a) .

I From this, the coupling is immediately seen to be maximal (for
such initial points).

I The construction directly generalizes to SL(2,R), its universal

cover ˜SL(2,R), and SU(2), and beyond to anisotropic
Heisenberg groups of any dimension,. . .



Properties

I The construction of the coupling is elementary, using no fine
properties of paths.

I The coupling time τ is reduced (or “reduced”) to a hitting time
σa for a canonical 1D marginal process.

I Relative to the global isometry implied by (∗), zt satisfies a
reflection principle, just like 1D BM

P (σa > t) = 1− 2P (zt > a) .

I From this, the coupling is immediately seen to be maximal (for
such initial points).

I The construction directly generalizes to SL(2,R), its universal

cover ˜SL(2,R), and SU(2), and beyond to anisotropic
Heisenberg groups of any dimension,. . .



Computing τ

It’s more or less classical that zt has density 1
t sech

(
π z

t

)
dz (e.g. Lévy,

Yor, Baudoin).

We can integrate this to find

P (σa > t) =
4
π

arctan
(

tanh
(π

2
· a

t

))
which is then an exact expression for distTV

(
L (Bt) ,L

(
B̃t
))

. Note
that

2
a
t
− π2

3

(a
t

)3
< P (σa > t) < 2

a
t
.
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Spatial dependence and gradients

Theorem (Luo-N. ’24, also Banerjee-Gordina-Mariano ’18, also
it’s immediate from the density of zt. . . )
Let Pt = e

t
2 ∆H be the heat semigroup on H and consider f ∈ L∞(H).

Then at any point (x, y, z) ∈ H and for any time t > 0, we have

|ZPtf (x, y, z)| = |∇VPtf (x, y, z)| ≤ 1
t
‖f‖∞.

This is stronger than a horizontal gradient bound or upper gradient
bound (in the sense of metric measure spaces), for points on the same
vertical fiber, because distsR((0, 0, 0), (0, 0, z)) = 2

√
π
√

z on H.
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Two-stage coupling
Two general points of H can be taken to be (0, 0, 0) and (h, 0, v).
Banerjee-Gordina-Mariano ’18 construct a two-stage coupling:

I First, couple the xy-marginals by reflection coupling on R2; let
the z-processes come along for the ride;

I the xy-marginals will couple at some random time τ1, and the
z-marginals will then differ by some random a;

I control the joint distribution of τ1 and a;

I now run a vertical coupling for points on the same fiber (I claim,
as above) from the random a;

I when this second stage succeeds, the particles have coupled in
the total space;

I the total coupling time is the combined time of both stages,
which we can estimate (BGM ’18):

P (τ > t) ≤ C
(

h√
t

+
|v|
t

)
for t > max{h2, 2|v|}.
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˜SL(2,R)
From our perspective, ˜SL(2,R) is H with R2 replaced by the
hyperbolic plane and z by the hyperbolic swept area. Using (normal)
polar coordinates on the hyperbolic plane, the BM is given by

drt = dW1
t +

1
2

coth(rt) dt

dθt =
1

sinh(rt)
dW2

t

dzt = tanh
(rt

2

)
dW2

t .

Further, zt can be written as

zt = z0 + W∫ t
0 tanh2( rs

2 ) ds

where Wt is a 1D Brownian motion independent of rt (and rt is the
radial process on the hyperbolic plane).
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Vertical coupling on ˜SL(2,R)
The coupling from points (0, 0, 0) and (0, 0, 2a) on the same fiber
proceeds the same way, with the same picture. But the coupling time
needs different estimates. No density for zt this time, and we need to
go a bit beyond Baudoin-Demni-Wang ’23+

Theorem (Luo-N. ’24)
There exist c,T0 > 0, independent of a, such that, for t ≥ T0,

P (σa > t) ≤
(

1√
2π

+ 2c
)

a√
t

for all a > 0.

Moreover, this bound is sharp, in the sense that, for any a > 0 and
ε > 0, there exists T ′ > 0 (which may depend on a and ε), such that

P (σa > t) ≥
(

1√
2π
− ε
)

a√
t

for t ≥ T ′.
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SL(2,R)

From this perspective, SL(2,R) is ˜SL(2,R) with z taken modulo 4π,
and SL(2,R) is topologically R2 × S1.

So now
σa = inf{t > 0 : zt = a or 2π − a}.

But the reflection still works almost the same way, the coupling is
maximal, etc.
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The vertical fiber picture

z0 = 0

−2π ∼= 2π

z̃0 = 2a

zσa = a

zσa = a− 2π

σa is when the particle from the bottom hits the green line. Reflection
in the hyperbolic plane then induces reflection through the green line.



Estimating σa for circular vertical fibers

It’s easy to see there is some exponential tail bound for the hitting
time:
There exist constants C > 0, c > 0, and T0 > 0 such that, for any
a ∈ S1,

P (σa > t) ≤ Ce−ct for all t > T0.

But computing/bounded c would require much finer control of the
area process. . .
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SU(2)

From this perspective, BM on SU(2) is BM on the sphere, with the
associated stochastic area, necessarily taken modulo 4π. (And this is
nicely compatible with the Hopf fibration.)

Once again, the construction of the maximal vertical coupling and its
qualitative properties are the same as before.
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Exponential decay of coupling time

We again get a non-explicit exponential bound on the vertical hitting
time,

P (σa > t) ≤ Ce−ct for all t > T0.

You can (probably) extract c from the Fourier analysis of
Baudoin-Bonnefont ’09, but stochastically, it’s not so nice.

Also, Bénéfice (’23) considers the two-stage coupling, and gives the
corresponding horizontal gradient bounds.
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Coda: Parallel-type couplings

On a Riemannian manifold with Ricci curvature bounded below by k,
there is a Markov coupling with

dist
(
Bt, B̃t

)
≤ e−K/2 dist (x0, x̃0) for all t ≥ 0.

For H, an abstract existence result: (Kuwada ’10) shows that there is a
constant C such that, for any given t > 0, there exists a coupling such
that

dist
(
Bt, B̃t

)
≤ C dist (x0, x̃0) for that t.
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Coda: Non-Markovian parallel coupling

Bonnefont-Juillet ’20 prove that no Markovian coupling on H can
stay bounded distance. So even for H, it’s not clear what this coupling
“looks like.”

Driver-Melcher ’05 show that C ≥
√

2. It is conjectured that C =
√

2.
To the best of my knowledge, nothing else about C is known.
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